border

Главное меню
Основы
Развитие ядерной энергетики в мире
Ядерная энергия как источник электроэнергии
Судовые реакторы
Использование высокотемпературной теплоты ядерных реакторов
Получение водорода
Экономические аспекты ядерной энергетики
Стоимость производства электроэнергии
Коэффициент использования мощности АЭС
Основы ядерной физики
Упругое рассеяние
Неупругое рассеяние
Захват нейтрона
Деление ядер
Выделение энергии при делении ядер
Постоянная распада и период полураспада
Мгновенные и запаздывающие нейтроны
Остаточное тепловыделение в реакторе
Поток нейтронов и скорость ядерных реакций
Пространственное распределение потока нейтронов в активной зоне реактора
Выгорание топлива и образование продуктов деления
Коэффициент конверсии и воспроизводства
Коэффициент конверсии и эффективность использования топлива
Источники активности в реакторе
Реактивность и нестационарные условия работы реактора
Температурный коэффициент реактивности, связанный с эффектом Доплера
Коэффициенты реактивности замедлителя и теплоносителя
Температурный коэффициент реактивности конструкционных материалов
Изменение реактивности реактора
Качественное описание поведения реактора
Введение (ядерный топливный цикл)
Потребность в уране реакторов различного типа
Мировые запасы урана
Производство урана
Запасы тория
Потребности в уране и его запасы
Получение концентрата, чистых соединений, преобразование урана
Обогащение урана (введение)
Схемы заводов по обогащению урана
Обогащение урана газодиффузионным методом
Центрифужный метод обогащения
Аэродинамические методы
Усовершенствованные методы разделения
Оптимальное содержание урана в отвале
Производство топлива
Легководные реакторы
Реакторы с водой под давлением
Активная зона
Система охлаждения
Защитная оболочка
Системы регулирования
Система безопасности
Аварийная остановка реактора
Система аварийного электропитания
Система аварийной подачи питательной воды
Система аварийного охлаждения
Герметизация защитной оболочки
Активная зона, корпус давления и система охлаждения
Системы безопасности
Система аварийного охлаждения и отвода энергии остаточного тепловыделения
Тепловые газоохлаждаемые реакторы
Усовершенствованные газоохлаждаемые реакторы
Высокотемпературные газоохлаждаемые реакторы
Реактор HTGR с призматическими ТВС
Реактор HTR с шаровыми твэлами
Основы безопасности
Система управления и защиты
Отвод энергии остаточного тепловыделения
Основные аварии
Тяжеловодные реакторы
Реактор с тяжелой водой под давлением CANDU
Регулирование реактивности
Система аварийного охлаждения
Системы безопасности
Тепловые реакторы-размножители
Гомогенные реакторы-размножители
Легководные реакторы-размножители LWBR
Роль реакторов размножителей на быстрых нейтронах
История развития быстрых реакторов-размножителей
Конструкция активной зоны
Энергетическое и пространственное распределения нейтронов
Коэффициенты реактивности и контроль реактора
Доплеровский коэффициент реактивности
Температурный коэффициент реактивности теплоносителя
Температурные коэффициенты реактивности топлива
Характеристики запаздывающих нейтронов
Технические аспекты быстрых реакторов-размножителей с натриевым охлаждением
"Суперфеникс" - промышленный быстрый реактор с натриевым теплоносителем
Активная зона и зоны воспроизводства
Корпус реактора и циркуляция натрия в первом контуре
Второй контур охлаждения и парогенераторы
Вопросы безопасности АЭС с реактором LMFBR
Принцип многократного барьера
Система управления и защиты
Отвод энергии остаточного тепловыделения и аварийное охлаждение реактора LMFBR
Внутриреакторный контроль и предотвращение распространения аварий
Конструкция первого контура и корпуса реактора
Возгорание натрия
Взаимодействие натрия с водой в парогенераторе
Гетерогенные зоны реактора LMFBR
Активные зоны реактора LMFBR с усовершенствованным топливом
Газоохлаждаемые быстрые реакторы
Однократный (открытый) топливный цикл
Замкнутый ядерный топливный цикл
Плутониевый рециклинг
Торий-урановый топливный цикл
Сравнение различных типов реакторов-конвертеров
Выбор топливного цикла для реакторов-размножителей
Уран-плутониевый топливный цикл
Торий-урановый топливный цикл
Расход природного урана при различных сценариях развития ядерной энергетики
Выгрузка и хранение отработавшего топлива
Перевозка отработавшего топлива
Промежуточное хранилище отработавшего топлива
Уран-плутониевый топливный цикл
Переработка отработавшего топлива из диоксида урана
Разделка ТВС и растворение топлива
Газовая очистка и удержание газообразных продуктов делений
Химическое отделение урана и плутония
Модель потоков масс радиоактивных материалов в установке по переработке топлива
Составляющие активности отработавшего топлива и радиоактивных отходов
Повторное использование плутония и урана
Преобразование нитрата плутония в оксид плутония
Преобразование уранилнитрата в оксид урана
Производство оксидного топлива
Состояние технологии переработки уранового топлива
Опыт переработки и изготовления смешанного оксидного топлива
Конструктивные меры безопасности перерабатывающих установок
О безопасности заводов по изготовлению твэлов из смешанного оксидного топлива
ТОРИЙ-УРАНОВЫЙ ТОПЛИВНЫЙ ЦИКЛ
Разделка ТВС
Торекс-процесс
Производство уран-ториевого топлива
Уран-плутониевый топливный цикл быстрых реакторов размножителей
Составляющие времени внешнего топливного цикла LMFBR
Потоки масс в модели топливного цикла LMFBR
Составляющие активности отработавшего топлива LMFBR
Переработка топлива LMFBR
Производство топлива для LMFBR
Переработка и повторное производство топлива для LMFBR
Обработка радиоактивных отходов
Отверждение и хранение жидких отходов высокой удельной активности
Отверждение и хранение твердых отходов высокой удельной активности
Обработка отходов средней удельной активности
Обработка других отходов
Объемы отходов переработки топлива, предназначенных для хранения
Радиоактивные отходы при переработке уран-ториевого топлива
Радиоактивные отходы при переработке уран-плутониевого топлива LMFBR
Отходы на других этапах топливного цикла
Отходы при переработке урановой руды
Отходы при очистке, конверсии и обогащении урана
Отходы при изготовлении твэлов и эксплуатации АЭС
Захоронение отходов в глубоких геологических формациях
Непосредственное захоронение отработавших ТВС
Воздействие радиоактивных захоронений на безопасность и здоровье населения
Выбросы и радиационное воздейстзие радиоактивных продуктов
Тритий, углерод-14 и криптон
Радионуклиды йода
Стронций и цезий
Нуклиды плутония
Прочие радиологически существенные нуклиды
Доза ионизирующего излучения
Допустимые уровни радиационного воздействия
Выбросы радионуклидов и радиационное воздействие на различных этапах топливного цикла
Радиоактивные загрязнения при добыче и переработке урановой руды
Радиационное воздействие на урановых рудниках и заводах по переработке руды
Получение UF6, обогащение и изготовление топлива
Выбросы радиоактивных продуктов на АЭС
Выбросы радиоактивных продуктов из реакторов
Сравнение радиоактивных выбросов на реакторах PWR и BWR
Сравнение радиоактивных выбросов на реакторах PWR и BWR
Радиоактивные выбросы на реакторах LMFBR, CANDU и HTGR
Дозы облучения населения в результате радиоактивных выбросов АЭС
Переработка облученного топлива и обработка радиоактивных отходов
Радиоактивные выбросы на комбинате по переработке облученного низкообогащенного топлива из UO2
Оцененные радиоактивные выбросы на комбинате по переработке смешанного облученного топлива PUO2/UO2
Радиационное воздействие комбината по переработке, топлива и радиоактивных отходов
Длительное накопление трития, 85Кr и 14С
Оценка риска связанного с эксплуатацией ядерных реакторов
Основные понятия (оценка риска)
Метод деревьев событий
Анализ деревьев отказов
Инициирующие события
Инициирующие события
Разрушение защитной оболочки
Радиоактивные выбросы
Внешние события
Моделирование распространения радиоактивных выбросов и облучение населения
Результаты анализа деревьев событий и деревьев отказов
Исследование риска в ФРГ
Изучение безопасности реакторов в США
Оценки риска с учетом последних данных по отказам
Исследования риска, связанного с эксплуатацией реакторов других типов
Исследование риска эксплуатации установок топливного цикла
Риск от объектов ядерной энергетики и других технических систем


Переработка облученного топгмва и обработка радиоактивных отходов Печать
Автор Сергей   
30.01.2008 г.

На заводах по переработке топлива и обработке радиоактивных отходов большинство радиоактивных веществ, высвобождаемых при расчехловке и растворении топлива, удерживается в пределах технологических установок с помощью различных технических устройств. Уровень радиоактивных выбросов в окружающую среду тщательно контролируется.
При расчехловке и растворении твэлов определенная доля трития вместе с газами выбрасывается в вентиляционную трубу. Другая часть трития удерживается стенками циркалоевой оболочки твэлов и вместе с ней отправляется в хранилище твердых отходов с высокой удельной активностью (ОВУА). Остальная часть трития остается в растворе азотной кислоты в виде тритированной воды. После удаления азотной кислоты оставшиеся жидкие отходы концентрируются путем выпаривания. На современных заводах по переработке топлива длительное хранение трития осуществляется в специальных баках. В качестве возможного хранилища жидких отходов с тритием могут быть использованы полости, расположенные на большой глубине, или колодцы.
В настоящее время в технологии обработки радиоактивных отходов заводов по регенерации топлива отсутствуют системы улавливания 14С и благородных газов. Однако в будущем при использовании процессов низкотемпературной ректификации выбросы этих радионуклидов могут быть существенно уменьшены. Например, радионуклид 1291 улавливается   фильтрами  из  азотнокислого   серебра  с  эффективностью  99,9%.
В газообразных отходах перерабатывающих заводов в виде разбавленных аэрозолей присутствуют также следующие радионуклиды:
54Mn, 55Fe,  60Co и 63Ni, входящие в состав конструкционных материалов твэлов и активируемые при работе реакторов;
продукте деления, такие, как 99Тс, 103Ru, 106Ru, 137Cs и т. д.;
аэрозоли трансурановых элементов и топлива, такие, как нуклиды плутония, америция и кюрия.
Ионизирующее излучение играет существенную роль, особенно в случае газообразных утечек;из установок по остекловыванию радиоактивных ОВУА. Газообразные утечки из расплавов могут иметь темпе-
ратуру до 200Си содержать до 3% аэрозолей помимо паров воды и оксидов азота. Эти утечки проходят через влажные газоочистители, улавливающие четырехоксид рутения. Затем их пропускают через колонны, поглощающие оксиды азота, ж через фильтры НЕРА для очистки воздуха от высокоактивных частиц, улавливающие аэрозоли рутения.
Все газообразные выбросы заводов по переработке и изготовлению топлива из регенерата и по обработке радиоактивных отходов пропускаются через фильтры НЕРА. Кроме того, применение нескольких защитных оболочек, так называемых защитных барьеров, с низкой скоростью утечки газа, а также хранение радиоактивных жидкостей и газов в баках или газгольдерах для выдержки и распада радиоактивных продуктов позволяют обеспечить высокие коэффициенты улавливания и, следовательно, низкие коэффициенты выхода радиоактивных продуктов. Коэффициент улавливания определяется как отношение удельной активности на входе в очистное устройство к удельной активности на выходе из этого устройства. Коэффициент выхода радиоактивных продуктов является величиной, обратной коэффициенту улавливания. Значения коэффициентов выхода для различных газообразных нуклидов и аэрозолей, используемые при изучении некоторых проектов комбинатов по переработке облученного топлива. Применение нескольких взаимосвязанных защитных барьеров и системы фильтров поз-
воляет достичь значений коэффициентов улавливания равных 108 и даже 109, а коэффициентов выхода 10-8 или 10-9 соответственно для таких аэрозолей, как стронций, рутений, плутоний и трансурановые элементы. Низкотемпературная ректификация благородных газов, поглощение йода фильтрами азотнокислого серебра, а также концентрация и
хранение третированной воды могут быть применены для достижения требуемых значений коэффициентов выхода благородных газов, йода и трития.
 

...   border border